rapid_tsa_python package¶
rapid_tsa_python module¶
-
rapid_tsa_python.
exec_calc_stats
(data_path=None, label_path=None, output_path=None)¶ Calculates statistics.
Note
Either data_path or label_path must be specified.
Parameters: data_path : str or None, default: None
The time series data file or directory path (absolute path). If use directory path, each file extension must be ‘csv’.
label_path : str or None, default: None
The label data file or directory path (absolute path). If use directory path, each file extension must be ‘lab’.
output_path : str or None, default: None
The output file path (absolute path).
-
rapid_tsa_python.
exec_preprocess
(preprocess_def_path, data_path=None, label_path=None, output_dir=None, suffix=None)¶ Pre-processes the data.
Note
Either data_path or label_path must be specified.
Parameters: preprocess_def_path: str
The preprocess definition file path (absolute path).
data_path : str or None, default: None
The time series data file or directory path (absolute path). If use directory path, each file extension must be ‘csv’.
label_path : str or None, default: None
The label data file or directory path (absolute path). If use directory path, each file extension must be ‘lab’.
output_dir : str or None, default: None
The output directory path (absolute path).
suffix : str or None, default: None
The suffix for preprocessed file name.
-
rapid_tsa_python.
exec_train
(mode, algorithm, label_path, model_dir, preprocess_def_path=None, param_conf_path=None)¶ Trains with the label data, and generates the model.
Parameters: mode : {‘reg’, ‘cls’}
Problem type; cls: classification, reg: regression.
algorithm : {‘1DCNN’, ‘1DDCN’, ‘1DOCN’}
The algorithm type; 1DCNN: 1-Dimension Convolutional Neural Network, 1DDCN: 1-Dimension Deep Convolutional Neural Network, 1DOCN: 1-Dimension OneClass Neural Network (only this algorithm is for classification).
label_path : str
The label data file or directory path (absolute path). If use directory path, each file extension must be ‘lab’.
model_dir : str
The model directory path (absolute path).
preprocess_def_path: str or None, default: None
The preprocess definition file path (absolute path).
param_conf_path : str or None, default: None
The hyper-parameter configuration file path (absolute path). Refer to chapter 6.6.2 of RAPID TSA V2.2 User Guide.
-
rapid_tsa_python.
exec_predict
(model_dir, data_path=None, label_path=None, preprocess_def_path=None, param_conf_path=None, output_dir=None, suffix=None)¶ Predicts labels for the time series data by the model.
Note
Either data_path or label_path must be specified.
Parameters: model_dir : str
The model directory path (absolute path).
data_path : str or None, default: None
The time series data file or directory path (absolute path). If use directory path, each file extension must be ‘csv’.
label_path : str or None, default: None
The label data file or directory path (absolute path). If use directory path, each file extension must be ‘lab’.
preprocess_def_path: str or None, default: None
The preprocess definition file path (absolute path).
param_conf_path : str or None, default: None
The hyper-parameter configuration file path (absolute path). Refer to chapter 6.6.3 of RAPID TSA V2.2 User Guide.
output_dir : str or None, default: None
The output directory path (absolute path).
suffix : str or None, default: None
The suffix for result file name.